Academic Course Description

BHARATH UNIVERSITY

Faculty of SCIENCE AND HUMANITIES

Department of Civil Engineering

FIRST Semester, 2017-18 (ODD Semester)

Course (catalog) description

This course is to understand the impact of Crystal Physics. Learn the Properties of Elasticity and Heat transfer. Acquire Knowledge on Quantum Physics. Understand the concepts of Acoustics & Ultrasonic's and its application understand the concepts on Laser & Fibre Optics and its application.

Compulsory/Elective course: Elective course

:

Credit & Contact hours		:	3 credits & 45 Hours	
Course Coordinator	:		Dr.R.Velavan	Associate Professor

Instructors

Name of the instructor	Class handling	Office location	Office phone	Email (domain:@ bharathuniv.ac.in	Consultation
Faculties of Physics Department	First year	First year Block		Hod.physics@bharathuniv.ac.in	9.00-9.50 AM

Relationship to other courses:

Pre – requisites :+2 level Physics

Assumed knowledge : The students will have a physics and mathematics background obtained at a high school (or equivalent) level.

Syllabus Contents

UNIT I: CRYSTAL PHYSICS:

Lattice – Unit cell – Bravais lattice – Lattice planes – Miller indices – d spacing in cubic lattice – Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for SC, BCC, FCC and HCP structures – Diamond and graphite structures (qualitative treatment)- Crystal growth techniques –solution, melt (Bridgman and Czochralski) and vapour growth techniques (qualitative)

UNIT II: PROPERTIES OF MATTER AND THERMAL PHYSICS:

Elasticity-Hooke"s law - Relationship between three modulii of elasticity (qualitative) – stress -strain diagram – Poisson"s ratio –Factors affecting elasticity –Bending moment – Depression of a cantilever –Young"s modulus by uniform bending- I-shaped girders Modes of heat transfer- thermal conductivity- Newton"s law of cooling - Linear heat flow – Lee"s disc method – Radial heat flow – Rubber tube method – conduction through compound media (series and parallel).

UNIT III: QUANTUM PHYSICS:

Black body radiation – Planck"s theory (derivation) – Deduction of Wien"s displacement law and Rayleigh – Jeans" Law from Planck"s theory – Compton effect. Theory and experimental verification – Properties of Matter waves – G.P Thomson experiment-Schrödinger"s wave equation – Time independent and time dependent equations – Physical significance of wave function – Particle in a one dimensional box - Electron microscope - Scanning electron microscope - Transmission electron microscope.

UNIT IV: ACOUSTICS AND ULTRASONICS:

Classification of Sound- decibel- Weber–Fechner law – Sabine"s formula- derivation using growth and decay method – Absorption Coefficient and its determination –factors affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - acoustic grating -Non Destructive Testing – pulse echo system through transmission and reflection modes - A,B and C – scan displays, Medical applications – Sonogram.

UNIT V: PHOTONICS AND FIBRE OPTICS:

Spontaneous and stimulated emission- Population inversion -Einstein"s A and B coefficients - derivation. Types of lasers – Nd:YAG, CO2, Semiconductor lasers (homojunction & heterojunction)- Industrial and Medical Applications. Principle and propagation of light in optical fibres – Numerical aperture and Acceptance angle - Types of optical fibres (material, refractive index, mode) – attenuation, dispersion, bending - Fibre Optical Communication system (Block diagram) - Active and passive fibre sensors- Endoscope.

TEXT BOOKS:

- 1. Jayaraman D Engineering Physics I. Global Publishing House ,2014.
- 2. Marikani A. Engineering Physics. PHI Learning Pvt., India, 2009.
- 3. Palanisamy P.K. Engineering Physics. SCITECH Publications, 2011.

REFERENCES:

1. Searls and Zemansky. University Physics, 2009

TOTAL NO OF PERIODS: 45 HOURS

9

9

9

9

- 2. Arumugam M. Engineering Physics. Anuradha publishers, 2010.
- 3. Gaur R.K. and Gupta S.L. Engineering Physics. Dhanpat Rai publishers, 2009.

Computer usage: Yes

Professional component

General	-	0%
Basic Sciences	-	100%
Engineering sciences & Technical arts	-	0%
Professional subject	-	0%

Broad area: photonics and fibre optics, Acoustics and ultrasonics and Properties of matter and thermal physics

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	August 3 rd week	Session 1 to 14	2 Periods
2	Cycle Test-2	September 2 nd week	Session 15 to 28	2 Periods
3	Model Test	October4 th week	Session 1 to 45	3 Hrs
	University			
4	Examination	ТВА	All sessions / Units	3 Hrs.

Mapping of Instructional Objectives with Program Outcome

To enhance the fundamental knowledge in Physics and its applications relevant to various streams of Engineering and Technology. This course	Co	rrelates to pro	ogram outcome
emphasizes:	Н	М	L
To understand the impact of Crystal Physics.	O,j	g	
Learn the Properties of Elasticity and Heat transfer.	C,I	e,i	b,k
Acquire Knowledge on Quantum Physics.		C,f	a,g
Understand the concepts of Acoustics & Ultrasonic's and its application	а	C,I	j
Understand the concepts on Laser & Fibre Optics and its application.			b,c,k,l

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture Schedule

Session	Topics	Problem Solving (Yes/No)	Text / Chapter
Unit -I:Cr	ystal Physics		1
1.	Introduction Lattice – Unit cell – Bravais lattice – Lattice planes	No	
2.	Miller indices – d spacing in cubic lattice	Yes	
3.	Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for SC	Yes	
4.	Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for BCC	Yes	-
5.	Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for FCC	Yes	[T1] Chapter -1,
6.	Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for HCP	Yes	-
7.	Crystal growth techniques –solution,	No	
8.	Crystal growth techniques – melt (Bridgman and Czochralski)	No	
9.	Crystal growth techniques vapour growth techniques (qualitative)	No	

10.	Introduction Elasticity-Hooke"s law - Relationship	No	
	between three modulii of elasticity		
11.	stress -strain diagram – Poisson"s ratio	No	
12.	Factors affecting elasticity –Bending moment	No	
13.	Depression of a cantilever –Young"s modulus by uniform bending ,I-shaped girders	Yes	[T1] Chapter -2
14.	Modes of heat transfer- thermal conductivity-	No	
15.	Newton"s law of cooling	Yes	
16.	Linear heat flow – Lee"s disc method	Yes	
17.	Radial heat flow – Rubber tube method	Yes	
18.	conduction through compound media (series and parallel)	No	
nit -III C	uantum Physics		
19.	Introduction -Black body radiation Compton effect	No	
20.	Planck"s theory (derivation)	Yes	
21.	Deduction of Wien"s displacement law and Rayleigh – Jeans" Law from Planck"s theory	Yes	
22.	Theory and experimental verification– G.P Thomson experiment	No	[T1]Chapter-3
23.	Schrödinger"s wave equation – Time independent equations	Yes	
24.	Schrödinger"s wave equation –time dependent equations	Yes	
25.	Physical significance of wave function – Particle in a one dimensional box	Yes	
26.	- Electron microscope - Scanning electron microscope	No	
27.	Transmission electron microscope	No	
nit —IV- A	coustics And Ultrasonics		
28.	Introduction Classification of Sound- decibel- Weber– Fechner law	No	[T1]Chapter-5,
29.	Sabine"s formula-	Yes	
30.	derivation using growth and decay method	Yes	
31.	Absorption Coefficient and its determination –factors	No	

32.	Production of ultrasonics by magnetostriction	No	
33.	Production of ultrasonics by piezoelectric methods	No	
34.	acoustic grating -Non Destructive Testing	No	
35.	pulse echo system through transmission and reflection modes - A,B and C – scan displays	No	
36.	Medical applications – Sonogram.	No	
Unit-V Pho	otonics And Fibre Optics		
37.	Introduction-Spontaneous and stimulated emission- Population inversion	No	
38.	-Einstein"s A and B coefficients - derivation.	Yes	
39.	Types of lasers – Nd:YAG, CO2	No	
40.	Semiconductor lasers (homojunction & heterojunction	No	
41.	Industrial and Medical Applications	No	[T1] Chapter 7,8
42.	Principle and propagation of light in optical fibres – Numerical aperture and Acceptance angle	Yes	
43.	Types of optical fibres (material, refractive index, mode) attenuation, dispersion, bending	No	
44.	Fibre Optical Communication system (Block diagram)	No	—
45.	Active and passive fibre sensors- Endoscope	No	
45.	Active and passive fibre sensors- Endoscope	NO	

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and brainstorming skills.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

Cycle Test – I	-	5%
Cycle Test – II	-	5%
Model Test	-	5%
Assignment	-	5%
Attendance	-	10%
Final exam	-	70%

Addendum

ABET Outcomes expected of graduates of B.Tech / Civil / program by the time that they graduate:

Engineering Graduate will have

a)an ability to apply knowledge of mathematics, science, and engineering fundamentals.

b)an ability to identify, formulate, and solve engineering problems

c)an ability to design a system, component, or process to meet desired needs within realistic constraints such as

economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability

d)an ability to design and conduct experiments, as well as to analyze and interpret data

e)an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice

f)an ability to apply reasoning informed by a knowledge of contemporary issues

g)an ability to broaden the education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context

h) an ability in understanding of professional and ethical responsibility and apply them in engineering practices

- i) an ability to function on multidisciplinary teams
- j) an ability to communicate effectively with the engineering community and with society at large

k) an ability in understanding of the engineering and management principles and apply them in Project and finance management as a leader and a member in a team.

Program Educational Objectives

PEO1: PREPARATION:

To provide strong foundation in mathematical, scientific and engineering fundamentals necessary to analyze, formulate and solve engineering problems in the field of Electronics And Communication Engineering.

PEO2: CORE COMPETENCE:

To enhance the skills and experience in defining problems in Electronics And Communication Engineering design and implement, analyzing the experimental evaluations, and finally making appropriate decisions.

PEO3: PROFESSIONALISM:

To enhance their skills and embrace new Electronics And Communication Engineering Technologies through selfdirected professional development and post-graduate training or education

PEO4: SKILL:

To provide training for developing soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, inter personal relationship, group discussion and leadership skill to become a better professional.

PEO5: ETHICS:

Apply the ethical and social aspects of modern communication technologies to the design, development, and usage of electronics engineering.

Course Teacher	Signature

Course Coordinator

HOD/CIVIL